Sparse Causal Discovery in Multivariate Time Series
نویسندگان
چکیده
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious causality structure is assumed, a promising approach to causal discovery consists in fitting VAR models with an additional sparsity-promoting regularization. Along this line we here propose that sparsity should be enforced for the subgroups of coefficients that belong to each pair of time series, as the absence of a causal relation requires the coefficients for all time-lags to become jointly zero. Such behavior can be achieved by means of `1,2-norm regularized regression, for which an efficient active set solver has been proposed recently. Our method is shown to outperform standard methods in recovering simulated causality graphs. The results are on par with a second novel approach which uses multiple statistical testing.
منابع مشابه
Constructing structural VAR models with conditional independence graphs
In this paper graphical modelling is used to select a sparse structure for a multivariate time series model of New Zealand interest rates. In particular, we consider a recursive structural vector autoregressions that can subsequently be described parsimoniously by a directed acyclic graph, which could be given a causal interpretation. A comparison between competing models is then made by consid...
متن کاملLearning Bi-clustered Vector Autoregressive Models
Vector Auto-regressive (VAR) models are useful for analyzing temporal dependencies among multivariate time series, known as Granger causality. There exist methods for learning sparse VAR models, leading directly to causal networks among the variables of interest. Another useful type of analysis comes from clustering methods, which summarize multiple time series by putting them into groups. We d...
متن کاملCausal Information Approach to Partial Conditioning in Multivariate Data Sets
When evaluating causal influence from one time series to another in a multivariate data set it is necessary to take into account the conditioning effect of the other variables. In the presence of many variables and possibly of a reduced number of samples, full conditioning can lead to computational and numerical problems. In this paper, we address the problem of partial conditioning to a limite...
متن کاملMeasurement Error and Causal Discovery
Algorithms for causal discovery emerged in the early 1990s and have since proliferated [4, 10]. After directed acyclic graphical representations of causal structures (causal graphs) were connected to conditional independence relations (the Causal Markov Condition1 and dseparation2), graphical characterizations of Markov equivalence classes of causal graphs (patterns) soon followed, along with p...
متن کاملBlock Variable Selection in Multivariate Regression and High-dimensional Causal Inference
We consider multivariate regression problems involving high-dimensional predictor and response spaces. To efficiently address such problems, we propose a variable selection method, Multivariate Group Orthogonal Matching Pursuit, which extends the standard Orthogonal Matching Pursuit technique. This extension accounts for arbitrary sparsity patterns induced by domain-specific groupings over both...
متن کامل